Abstract

The adrenal medulla chromaffin cells (AMCs) secrete catecholamines in response to various types of stress. We examined the hypoxia-sensitivity of catecholamine secretion by rat foetal chromaffin cells in which the innervation by the splanchnic nerve is not established. The experiments were performed in primary cultured cells from two different ages of foetuses (F15 and F19). Membrane potential of AMCs was monitored with the patch clamp technique, and the catecholamine secretion was detected by amperometry. We found that: (1) AMCs from F19 foetuses showed hypoxia-induced catecholamine release. (2) This hypoxia-induced secretion is produced by membrane depolarization generated by an inhibition of Ca(2+)-activated K(+) current [I (K(Ca))] current. (3) Chromaffin precursor cells from F15 foetuses secrete catecholamine. The quantal release is calcium-dependent, but the size of the quantum is reduced. (4) In the precursor cells, a hypoxia-induced membrane hyperpolarization is originated by an ATP-sensitive K(+) current [I (K(ATP))] activation. (5) During the prenatal period, at F15, the percentage of the total outward current for I (K(ATP)) and I (K(Ca)) was 50 and 29.5%, respectively, whereas at F19, I (K(ATP)) is reduced to 14%, and I (K(Ca)) became 64% of the total current. We conclude that before birth, the age-dependent hypoxia response of chromaffin cells is modulated by the functional activity of K(ATP) and K(Ca) channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.