Abstract

The effects of articular stimulation on adrenal catecholamine secretion and adrenal sympathetic nerve activity were studied using halothane anaesthetized cats. Various natural passive movements were applied to the normal and inflamed knee joints. Rhythmic flexions and extensions as well as rhythmic inward and outward rotation of normal knee joints within their physiological range of motion did not change nerve activity or the secretion of adrenal catecholamines. Static outward rotation in the normal working range was also ineffective. However, as soon as this static rotation was extended into the noxious range, significant increases in both of these variables were elicited. In the acutely inflamed knee joint, various passive movements produced increases in both adrenal sympathetic and catecholamine secretion. Especially noteworthy was the finding that movements of the inflamed knee joint that were within the normal range of motion produced increases in all variables. Articularly induced increases in adrenal sympathetic nerve activity were diminished by severing various hind-limb somatic afferent nerves and abolished by complete denervation of the knee joint. Additionally, section of the adrenal sympathetic nerves eliminated the catecholamine secretion response. From these data it was concluded that the responses observed in these experiments were reflexes having an afferent limb in hind-limb nerves and an efferent limb in the adrenal sympathetic nerves. A contribution of supraspinal structures was suggested for the reflex responses of sympatho-adrenal medullary function evoked by knee joint stimulations, since spinal transection at the C2 level completely abolished the responses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call