Abstract

The sensitive and selective perception of dopamine (DA, a typical neurotransmitter) is important to evaluate the biological environment. In this study, a catechin-functionalized gold nanocluster (C-Au NC) nanoprobe has been explored for the ratiometric DA sensing. The detection mechanism is based on the formation of azamonardine via selective DA-catechin chemical reaction and subsequent enhanced fluorescence emission. Using Au NC emission as the internal reference, ratiometric fluorescence variation is realized, which allows sensitive DA analysis with a limit of detection of 1.0 nM (S/N = 3) and linear response concentration range from 0 to 500 nM. The characteristic chemical reaction between catechin and DA affords favorable selectivity over other amino acids, metal ions and small molecules. In addition, the practical application of the proposed nanoprobe is validated by the accurate detection of DA content in urea and cell lysate samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call