Abstract

Modeling of rainfall-runoff is very critical for flood prediction studies in decision making for disaster management. Deep learning methods have proven to be very useful in hydrological prediction. To increase their acceptance in the hydrological community, they must be physic-informed and show some interpretability. They are several ways this can be achieved e.g. by learning from a fully-trained hydrological model which assumes the availability of the hydrological model or to use physic-informed data. In this work we developed a Graph Attention Network (GAT) with learnable Adjacency Matrix coupled with a Bi-directional Gated Temporal Convolutional Neural Network (2DGAT-BiLSTM). Physic-informed data with spatial information from Digital Elevation Model and geographical data is used to train it. Besides, precipitation, evapotranspiration and discharge, the model utilizes the catchment area characteristic information, such as instantaneous slope, soil type, drainage area etc. The method is compared to two different current developments in deep learning structures for streamflow prediction, which also utilize all the spatial and temporal information in an integrated way. One, namely Graph Neural Rainfall-Runoff Models (GNRRM) uses timeseries prediction on each node and a Graph Neural Network (GNN) to route the information to the target node and another one called STA-LSTM is based on Spatial and temporal Attention Mechanism and Long Short Term Memory (LSTM) for prediction. The different methods were compared in their performance in predicting the flow at several points of a pilot catchment area. With an average prediction NSE and KGE of 0.995 and 0.981, respectively for 2DGAT-BiLSTM, it could be shown that graph attention mechanism and learning the adjacency matrix for spatial information can boost the model performance and robustness, and bring interpretability and with the inclusion of domain knowledge the acceptance of the models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.