Abstract

Zeolites are key materials in both basic research and industrial applications. However, their synthesis is neither diverse nor applicable to labile frameworks because classical procedures require harsh hydrothermal conditions, whereas post-synthesis methods are limited to a few suitable parent materials. Remaining frameworks can fail due to amorphization, dissolution, and other decomposition processes. Nevertheless, stopping degradation at intermediate structures could yield new zeolites. Here, by optimizing the design and synthesis parameters of the parent zeolite IWV, we "caught" a new, highly crystalline, and siliceous zeolite during its degradation. IWV seed-assisted crystallization followed by gentle transformation into the water-alcohol system yielded the highly crystalline daughter zeolite IPC-20, whose structure was solved by precession-assisted three-dimensional electron diffraction. Without additional requirements, as in conventional (direct or post-synthesis) strategies, our approach may be applied to any chemically labile material with a staged structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.