Abstract

We address the longstanding challenge of producing flexible, realistic humanoid character controllers that can perform diverse whole-body tasks involving object interactions. This challenge is central to a variety of fields, from graphics and animation to robotics and motor neuroscience. Our physics-based environment uses realistic actuation and first-person perception - including touch sensors and egocentric vision - with a view to producing active-sensing behaviors (e.g. gaze direction), transferability to real robots, and comparisons to the biology. We develop an integrated neural-network based approach consisting of a motor primitive module, human demonstrations, and an instructed reinforcement learning regime with curricula and task variations. We demonstrate the utility of our approach for several tasks, including goal-conditioned box carrying and ball catching, and we characterize its behavioral robustness. The resulting controllers can be deployed in real-time on a standard PC. 1

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.