Abstract

Debris flows and debris floods are catastrophic disturbances in steep, mountainous landscapes throughout the world, but little is known about the long-term ecological effects of these events on headwater streams. In 10 basins (10–20 km2) in the Klamath Mountains, northern California, USA, we used a space-for-time substitution to infer the long-term (10–100 years) effects of debris flows on stream ecosystem structure. Debris flows mobilized sediment and wood and removed riparian vegetation from large portions of channel networks. Stream temperatures were significantly warmer in streams that had recent debris flows (<10 years ago). Large wood, benthic organic matter, and detritivorous stoneflies were all very sparse in recent debris flow streams, suggesting that allochthonous energy pathways took decades to recover. Rainbow trout ( Oncorhynchus mykiss ) were abundant in recent debris flow streams, but populations of other vertebrates such as coastal giant salamander ( Dicamptodon tenebrosus ) and coastal tailed frog ( Ascaphus truei ) were virtually absent. Increased frequencies of catastrophic debris flows associated with forest management practices can have significant negative impacts on aquatic biodiversity in forested, mountainous landscapes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call