Abstract

Most existing works on riddling assume that the underlying dynamical system possesses an invariant subspace that usually results from a symmetry. In realistic applications of chaotic systems, however, there exists no perfect symmetry. The aim of this paper is to examine the consequences of symmetry-breaking on riddling. In particular, we consider smooth deterministic perturbations that destroy the existence of invariant subspace, and identify, as a symmetry-breaking parameter is increased from zero, two distinct bifurcations. In the first case, the chaotic attractor in the invariant subspace is transversely stable so that the basin is riddled. We find that a bifurcation from riddled to fractal basins can occur in the sense that an arbitrarily small amount of symmetry breaking can replace the riddled basin by fractal basins. We call this a catastrophe of riddling. In the second case, where the chaotic attractor in the invariant subspace is transversely unstable so that there is no riddling in the unperturbed system, the presence of a symmetry breaking, no matter how small, can immediately create fractal basins in the vicinity of the original invariant subspace. This is a smooth-fractal basin boundary metamorphosis. We analyze the dynamical mechanisms for both catastrophes of riddling and basin boundary metamorphoses, derive scaling laws to characterize the fractal basins induced by symmetry breaking, and provide numerical confirmations. The main implication of our results is that while riddling is robust against perturbations that preserve the system symmetry, riddled basins of chaotic attractors in the invariant subspace, on which most existing works are focused, are structurally unstable against symmetry-breaking perturbations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call