Abstract
Ca2+ homeostasis and signaling disturbances are associated with lens pathophysiology and are involved in cataract formation. Here, we explored the spatiotemporal changes in Ca2+ signaling in lens epithelial cells (LECs) upon local mechanical stimulation, to better understand the LECs’ intercellular communication and its association with cataractogenesis. We were interested in if the progression of the cataract affects the Ca2+ signaling and if modifications of the Ca2+ homeostasis in LECs are associated with different cataract types. Experiments were done on the human postoperative anterior lens capsule (LC) preparations consisting of the monolayer of LECs on the basement membrane. Our findings revealed that the Ca2+ signal spreads radially from the stimulation point and that the amplitude of Ca2+ transients decreases with increasing distance. It is noteworthy that a comparison of signaling characteristics with respect to the degree of cataract progression revealed that, in LCs from more developed cataracts, the Ca2+ wave propagates faster and the amplitudes of Ca2+ signals are lower, while their durations are longer. No differences were identified when comparing LCs with regard to the cataract type. Moreover, experiments with Apyrase have revealed that the Ca2+ signals are not affected by ATP-dependent paracrine communication. Our results indicated that cataract progression is associated with modifications in Ca2+ signaling in LECs, suggesting the functional importance of altered Ca2+ signaling of LECs in cataractogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.