Abstract

Catanionic solid lipid nanoparticles (CASLNs), loaded with doxorubicin (Dox) and grafted with anti-epithelial growth factor receptor (EGFR) (anti-EGFR/Dox-CASLNs), were applied to suppressing propagation of malignant U87MG cells. U87MG cells were cultured with anti-EGFR/Dox-CASLNs for assessing the cell viability and EGFR expression. When the concentration of catanionic surfactants, containing hexadecyltrimethylammonium bromide and sodium anionic sodium dodecylsulfate, was 1mM, CASLNs entrapped the largest quantity of Dox. The order of cacao butter (CB) in the entrapment efficiency of Dox was 50% CB>0% CB>100% CB. In addition, the release rate of Dox and the antiproliferative effect on U87MG cells were in the following order: 100% CB>0% CB>50% CB. A high level of CB in anti-EGFR/Dox-CASLNs reduced the cytotoxicity to human brain-microvascular endothelial cells. The immunochemical staining revealed that the crosslinked anti-EGFR on the surface of Dox-CASLNs preserved a high specificity in recognizing EGFR on U87MG cells and inducing growth-inhibition effect. The innovated anti-EGFR/Dox-CASLNs can be an effective delivery system with high targeting efficacy against the growth of brain glioblastomas carcinoma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.