Abstract

Catanionic nanovesicles are attractive as a novel class of delivery vehicle because they can increase the stability, adsorption, and cellular uptake of a broad range of drugs. These hybrid lipid nanocarriers consist of solid and liquid lipids, which are biocompatible and biodegradable. Since liquid lipid is added to the nanocarrier, the lipids are present in a crystalline defect or amorphous structure state. As a result, hybrid lipid nanocarriers have a higher drug loading capability and suffer less drug leakage during preparation and storage compared to the pure lipid nanocarriers. Catanionic nanovesicles have been shown to increase stability, adsorption, cellular uptake, apoptosis induction, tumor cell cytotoxicity, and antitumorigenic effect, making it a highly desirable vehicle for drug delivery. For example, the anticancer compound curcumin (CC) have shown great promise to cure cancers such as lung cancer, breast cancer, stomach cancer, and colon cancer. However, like many potential antitumor drugs, CC on its own has poor water solubility, easy photodegradation, chemical instability, low bioavailability, rapid metabolism, and fast systematic clearance, which severely limits its clinical applications. In this chapter, we demonstrate the use of catanionic nanovesicles to improve the bioavailability and efficacy of CC for anticancer applications. This technique can be easily adapted for delivery and evaluation of other bioactive compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.