Abstract

Catalytic hydrogenation of mono-, di- and trinuclear aromatic compounds has been studied under hydrogen transfer conditions at 150 °C and 82 °C in 2-PrOH as a hydrogen donor and with Raney® nickel as a catalyst. In contrast to conjugated or condensed aromatic rings, isolated ones demonstrated low reactivity in transfer hydrogenation (TH) that can be used to increase the hydrogenation selectivity of the reaction. So, naphthalene and biphenyl are partially hydrogenated into tetralin and cyclohexylbenzene, respectively, with excellent conversion (≥ 96 %) and selectivity (≥ 98 %) for 5–6 h at 82 °C. Increasing the reaction temperature to 150 °C results expectedly in the hydrogenation of second aromatic ring, which occurs slowly enough. Only 8 % of decaline and 42 % of dicyclohexyl, correspondingly, were obtained after 5 h at 150 °C. At the same time, TH of trinuclear anthracene and phenanthrene at 150 °C resulted in the formation of deeper hydrogenated octahydro-anthracenes and -phenanthrenes, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call