Abstract
Creating efficient artificial catalysts that can compete with biocatalysis has been an enduring challenge which has yet to be met. Reported herein is the synthesis and characterization of a series of zinc complexes designed to catalyze the hydrolysis of phosphate diesters. By introducing a hydrated aldehyde into the ligand we achieve turnover for DNA-like substrates which, combined with ligand methylation, increases reactivity by two orders of magnitude. In contrast to current orthodoxy and mechanistic explanations, we propose a mechanism where the nucleophile is not coordinated to the metal ion, but involves a tautomer with a more effective Lewis acid and more reactive nucleophile. This data suggests a new strategy for creating more efficient metal ion based catalysts, and highlights a possible mode of action for metalloenzymes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.