Abstract

The catalytic wet air oxidation of p-coumaric acid, a representative substrate of biorecalcitrant phenolic compounds typically found in olive oil processing wastewater, was carried out under mild conditions (in air at T = 353 K and P = 2 MPa) with activated carbon (AC) and multiwalled carbon nanotubes (CNTs). The influence of the CNT textural and surface chemistry modification, by oxidation with a nitric/sulfuric acid mixture, on the catalytic behavior was evaluated. AC and unoxidized CNTs showed the highest activity toward the degradation of p-coumaric acid and the highest efficiency toward total organic carbon (TOC) removal, which mainly occurs through mineralization to CO2. As a result of oxidation with an acid mixture, the stability of the CNTs was dramatically worsened. From a comparison with literature data, it was concluded that the most efficient AC and unoxidized CNTs catalysts are, so far, very promising systems for p-coumaric acid degradation under mild conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.