Abstract

Catalytic wet air oxidation (CWAO) of stearic acid was carried out in a batch reactor over noble metals (Ru, Pd, Pt, Ir) catalysts supported on ceria. The influence of reaction conditions such as temperature, oxygen pressure and stearic acid concentration were investigated. The reaction occurs via a complex mechanism. The molecule of stearic acid can be oxidized by successive carboxy–decarboxylation (RnCOOH + O2 → Rn−1COOH +CO2) yielding essentially CO2 (route A). It may also be oxidized after CC bond rupture within the alkyl chain, which gives rise to significant amounts of acetic acid besides CO2 (route B). Pt/CeO2 is a very active catalyst in the conversion of stearic acid and extremely selective to carbon dioxide (route A), while the mechanism via CC bond splitting is much more marked on Ru/CeO2. The catalyst characterization indicates that both noble metal and CeO2 particles remain stable during the reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.