Abstract

Huge water consumptions and pollutants releases in the environment urge effective water decontamination technologies, fostering extensive recycle and reuse of industrial process-water and wastewater. The heterogeneous catalytic wet air oxidation (CWAO) offers a practical solution to the problem of decontamination of industrial effluents characterised by high concentration of toxic-refractory compounds, which are also detrimental for the active sludge of biological systems. Therefore, this work shows the superior CWAO performance of a new class of nanostructured MnCeOx catalysts toward the mineralization of some common toxic and refractory industrial pollutants. Mechanistic and kinetic evidences are summarised into a Langmuir-Hinshelwood reaction mechanism, leading to a formal kinetic model predicting the CWAO performance of nanostructured MnCeOx catalysts and optimum reaction conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.