Abstract

A series of activated carbon (AC) supported Au nanocatalysts with different loadings of Au were prepared by using the homogeneous deposition–precipitation (HDP) method. The samples were characterised with myriad techniques such as X-ray diffraction (XRD), CO-chemisorption, N2 adsorption–desorption measurements, transmission electron microscopy (TEM), inductively coupled plasma-optical emission spectrometer (ICP-OES) and X-ray photoelectron spectroscopy (XPS) to understand the structural and textural properties in detail. The catalysts were tested for the vapour phase oxidation of glycerol to glyceric acid under base-free medium in an aerobic condition at normal atmospheric pressure. The Au/AC nanocatalysts with smaller size Au particles ([Formula: see text][Formula: see text]nm) showed higher glycerol conversion and selectivity for glyceric acid, and also a longer catalyst life. While the larger Au particles ([Formula: see text][Formula: see text]nm) showed less activity and selectivity. Among all the nanocatalysts tested, the 1.0[Formula: see text]wt.% Au/AC sample having smaller particle size of Au showed the best catalytic performance in terms of glycerol conversion and glyceric acid selectivity. These results suggest that the oxidation activities of Au/AC nanocatalysts are strongly influenced by the size of Au nanoparticle, nature of the support material and through a metal-support interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.