Abstract
The main objective of the present work was the study of different ZSM-5 catalytic formulations for the in situ upgrading of biomass pyrolysis vapors. An equilibrium, commercial diluted ZSM-5 catalyst was used as the base case, in comparison with a series of nickel (Ni) and cobalt (Co) modified variants at varying metal loading (1–10wt.%). The product yields and the composition of the produced bio-oil were significantly affected by the use of all ZSM-5 catalytic materials, compared to the non-catalytic flash pyrolysis, producing less bio-oil but of better quality. Incorporation of transition metals (Ni or Co) in the commercial equilibrium/diluted ZSM-5 catalyst had an additional effect on the performance of the parent ZSM-5 catalyst, with respect to product yields and bio-oil composition, with the NiO modified catalysts being more reactive towards decreasing the organic phase and increasing the gaseous products, compared to the Co3O4 supported catalysts. However, all the metal-modified catalysts exhibited limited reactivity towards water production, while simultaneously enhancing the production of aromatics and phenols. An interesting observation was the in situ reduction of the supported metal oxides during the pyrolysis reaction that eventually led to the formation of metallic Ni and Co species on the catalysts after reaction, which was verified by detailed XRD and HRTEM analysis of the used catalysts. The Co3O4 supported ZSM-5 catalysts exhibited also a promising performance in lowering the oxygen content of the organic phase of bio-oil.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.