Abstract

A density functional theoretical study has been performed for the mechanisms of platinum(IV)-catalyzed alkyne-to-conjugated diene conversion reaction, which involves two subsequent triple bond activation steps followed by vinyl−vinyl coupling. Calculations have shown that acetylene triple bond activation by PtI62- in water or methanol solution may proceed through either external nucleophile addition or intramolecular insertion, with the former mechanism occurring with a lower barrier and leading to thermodynamically favored product. The rate-determining step of the entire catalytic cycle is found to be the formation of a platinum(IV) cis-divinyl derivative. Although vinyl−vinyl coupling reaction may take place from both six-coordinated octahedral and five-coordinated square-pyramidal platinum(IV) divinyl complexes, the five-coordinated derivative was found to react with a significantly lower barrier. The results obtained here are in good agreement with available experimental data and reveal important deta...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call