Abstract

ABSTRACT On purpose, selective oligomerization of ethylene to its linear trimer and tetramer such as 1-hexene and 1-octene has assumed significant commercial interest. Catalytic systems based on chromium and titanium have shown remarkable selectivity and productivity for the tri and tetramerization of ethylene to 1-hexene or 1-octene. Chromium-based catalysts are the most selective and active and show the highest structural diversity. This article discusses the most recent mechanistic approaches regarding active catalytic species that determine the selectivity to either hexene-1 or octene-1 and reaction parameters that control selectivity of byproducts. Isotopic labeling protocols, in-situ spectroscopic investigations and DFT studies on selected chromium-based catalyst systems are reviewed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.