Abstract

Cellulose is a promising renewable and abundant resource for the production of high-value chemicals, in particular, organic oxygenates, because of its high oxygen/carbon ratio. The sustainable production of hydroxycarboxylic acids and dicarboxylic acids, such as gluconic/glucaric acid, lactic acid, 2,5-furandicarboxylic acid, adipic acid, and terephthalic acid, most of which are monomers of key polymers, have attracted much attention in recent years. The synthesis of these organic acids from cellulose generally involves several tandem reaction steps, and thus, multifunctional catalysts that can catalyze the selective activation of specific C-O or C-C bonds hold the key. This review highlights recent advances in the development of efficient catalytic systems and new strategies for the selective conversion of cellulose or its derived carbohydrates into functionalized organic acids. The reaction mechanism is discussed to offer deep insights into the regioselective cleavage of C-O or C-C bonds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.