Abstract

The oxidation of alcohols to carboxylic acids is an important industrial reaction used in the synthesis of bulk and fine chemicals. Most current processes are performed by making use of either stoichiometric amounts of toxic oxidizing agents or the use of pressurized dioxygen. Here, we describe an alternative dehydrogenative pathway effected by water and base with the concomitant generation of hydrogen gas. A homogeneous ruthenium complex catalyses the transformation of primary alcohols to carboxylic acid salts at low catalyst loadings (0.2mol%) in basic aqueous solution. A consequence of this finding could be a safer and cleaner process for the synthesis of carboxylic acids and their derivatives at both laboratory and industrial scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.