Abstract

To realize economical and effective removal of hazardous 4-nitrophenol from the environment, we developed an easily recyclable ZnO nanowire array decorated with Cu nanoparticles. Its salix argyracea-shaped structure not only provides a platform to achieve stable and good dispersion of Cu nanoparticles, but also offers a great deal of catalytically active sites. The density functional theory calculations reveal that ZnO and Cu have a very beneficial synergistic effect on their catalytic capability. This synergy is ascribed to the electronic localization occurring at ZnO/Cu interface, which helps improve Cu nanoparticle's ability to adsorb electro-negatively 4-nitrophenolate ions and to capture hydrogen radicals, thereby accelerating the hydrogen transfer from metal hydride complex to 4-nitrophenol. Benefiting from these characteristics, it exhibits high efficiency and reusability towards the catalytic reduction of waste 4-nitrophenol to valuable 4-aminophenol with a rate constant of 43.02 × 10−3 s−1 and an average conversion of 96.5% in 90 s during 10 cycles. This activity is superior to that of most reported noble- or non-noble-metal powder, bulk, coating, and array catalysts, indicating its competitive advantages in cost and efficiency, as well as enticing application prospects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call