Abstract
A series of carbon-supported CuCo oxide catalysts (Cu-Co/C) were prepared via the combination methods of impregnation and pyrolysis using Co-doped Cu-based metal organic framework (Cu3(BTC)2·3H2O, Cu-BTC) precursor. Physicochemical properties of prepared catalysts were characterized by using various technologies and toluene was chosen as the probe molecule to evaluate their catalytic performance. Results revealed that the successive calcination in Ar and air was conducive to the formation of 3D porous carbon matrix and homogeneous elemental dispersion. The Cu-Co/C catalysts with spinel structure exhibited higher catalytic activity than that of Cu-500/C material. Moreover, CuCo0.5/C material exhibited superior catalytic durability and water resistance in catalytic oxidation of toluene. The excellent catalytic performance of CuCo0.5/C was mainly related to large specific surface area, high amounts of surface chemisorbed active oxygen and high ratio of Co2+/Co3+.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.