Abstract

Given their unique and excellent properties, metal–organic frameworks (MOFs) materials have been used in many scientific fields. EMOFs use energetic materials as ligands, which can provide part of the energy for the system while catalyzing ammonium perchlorate. The energetic material 1.1′-dihydroxyazotetrazole (H2AzTO), as a high-energy nitrogen-rich material, was selected as a ligand. Five kinds of La3+, Ce3+, Pr3+, Nd3+, and Sm3+ lanthanide EMOFs were synthesized and obtained. Single crystal X-ray diffraction tests were conducted to obtain the crystal structures of EMOFs 1–5, which indicate that they have similar crystal structures. The thermal stabilities of EMOFs 1–5, which are obtained by differential scanning calorimetry (DSC) tests, are improved compared with that of the ligand. The results of thermic-decomposition of ammonium perchlorate (AP) and AP mixtures with 10 wt% EMOFs 1–5 show that except for AP mixed with 10 wt% compound 2, the high-temperature decomposition peak temperature of AP mixed with other compounds is significantly advanced (up to 59.3–88.3 K), and the decomposition of AP is continuous and violent. EMOFs 3–5 have good application prospects for the catalytic thermic-decomposition of AP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call