Abstract

Porous porphyrin metal-organic frameworks (PMOFs) provide promising platforms for studying CO2 capture and conversion (C3) owing to their versatility in photoelectric, catalytic, and redox activities and porphyrin coordination chemistry. Herein, we report the C3 application of two PMOFs by engineering the coordination space through the introduction of two catalytic metalloporphyrins doped with rhodium or iridium, Rh-PMOF-1 and Ir-PMOF-1, both of which can serve as heterogeneous catalysts for the chemical fixation of CO2 into cyclic carbonates with yields of up to 99 %. Remarkably, the catalytic reactions can effectively proceed under low CO2 concentrations and high yields of 83 % and 73 % can be obtained under 5 % CO2 in the presence of Rh-PMOF-1 and Ir-PMOF-1, respectively. The synergistic effect of the metalloporphyrin ligand and the Zr6 O8 cluster, in combination with the CO2 concentration effect from the pore space, might account for the excellent catalytic performance of Rh-PMOF-1 under low CO2 concentration. Recycling tests of Rh-PMOF-1 show negligible loss of catalytic activity after 10 runs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.