Abstract

The kinetics of catalytic reduction of U(VI) with formic acid in H2SO4 solutions in the presence of Pd/SiO2 catalysts differing in the size of nanocrystallites of the active metal was studied. A decrease in the size of supported Pd particles leads to a decrease in the specific activity of the catalyst, i.e., the catalytic centers located on large crystallites exhibit higher activity. An increase in the Pd percent content on SiO2 leads to a decrease in the activity of the catalytic centers, which is caused by a considerable increase in the contribution of the side reaction of catalytic decomposition of HCOOH with an increase in the number of active centers in the catalyst grain. The results obtained are interpreted on the basis of the concepts of the energy nonuniformity of the surface atoms and of the reaction mechanism. The results show that the size of Pd nanocrystallites is an important factor of the selectivity of palladium catalysts in the preparation of U(IV) by catalytic reduction with formic acid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.