Abstract

The catalytic conversion of greenhouse gases, such as N2O, is a promising way to mitigate global warming. In this work, density functional theory (DFT) studies were performed to study N2O reduction by CO over single-atom catalysts (SACs) and compare the performance of noble (Au/C2N) and non-noble (Cu/C2N) SACs. The computational results indicated that catalytic N2O reduction on both catalysts occurs via two mechanisms: (I) the N2O adsorption mechanism—starting from the adsorption on the catalysts, N2O decomposes to a N2 molecule and O-M/C2N intermediate, and then CO reacts with O atom on the O-M/C2N intermediate to form CO2; and (II) the CO adsorption mechanism—CO and N2O are adsorbed on the catalyst successively, and then a synergistic reaction occurs to produce N2 and CO2 directly. The computational results show that mechanism I exhibits an obvious superiority over mechanism II for both catalysts due to the lower activation enthalpy. The activation enthalpies of the rate-determining step in mechanism I are 1.10 and 1.26 eV on Au/C2N and Cu/C2N, respectively. These results imply that Cu/C2N, an abundant-earth SAC, can be as active as expensive Au/C2N. Herein, our research provides a theoretical foundation for the catalytic reduction of N2O and broadens the application of non-noble-metal SACs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.