Abstract
We present a computational study of the activity and selectivity of early transition-metal carbides as carbon dioxide reduction catalysts. We analyze the effects of the adsorption of CO2 and H2 on the (001), (011), and metal-terminated (111) surfaces of TiC and ZrC, as carbon dioxide undergoes either dissociation to CO or hydrogenation to COOH or HCOO. The relative stabilities of the three reduction intermediates and the activation energies for their formation allow the identification of favored pathways on each surface, which are examined as they lead to the release of CO, HCOOH, CH3OH, and CH4, thereby also characterizing the activity and selectivity of the two materials. Reaction energetics implicate HCO as the key common intermediate on all surfaces studied and rule out the release of formaldehyde. Surface hydroxylation is shown to be highly selective toward methane production as the formation of methanol is hindered on all surfaces by its barrierless conversion to CO.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.