Abstract

The energy transfer catalytic recombination coefficient for nitrogen and oxygen recombination on the surface coating of high-temperature reusable surface insulation (HRSI) is inferred from stagnation point heat flux measurements in a high-temperature dissociated arc jet flow. The resulting catalytic recombination coefficients are correlated with an Arrhenius model for convenience, and these expressions may be used to account for catalytic recombination effects in predictions of the heat flux on the HRSI thermal protection system of the Space Shuttle Orbiter during reentry flight. Analysis of stagnation point pressure and total heat balance enthalpy measurements indicates that the arc heater reservoir conditions are not in chemical equilibrium. This is contrary to what is usually assumed for arc jet analysis and indicates the need for suitable diagnostics and analyses, especially when dealing with chemical reaction phenomena such as catalytic recombination heat transfer effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.