Abstract

The catalytic fast pyrolysis process is a promising method for converting biomass waste into bio-oil, where the catalyst plays a crucial role in determining the yield and quality of the products. In this study, ultrafine iron nanoparticles were incorporated onto a montmorillonite substrate through the pyrolyzing coordinated polymer method to enhance liquid fuel production via catalytic pyrolysis of biomass waste. The catalyst showed a uniform distribution of iron on the montmorillonite surface, indicating that the incorporation was successful. Catalytic pyrolysis led to an increase in liquid yields and a decrease in gas product yields compared to direct pyrolysis. The highest bio-oil yield obtained was 56.9% during the catalytic pyrolysis of corncob, which was found to be particularly well-suited for the production of bio-oil. Furthermore, the proposed reaction pathway was based on identifying the composition of the bio-oil, which was further supported by quantum chemical calculations of chemical bond strength and the likelihood of free radical attacks. These findings demonstrate the potential of using montmorillonite-supported ultrafine iron nanoparticles to enhance bio-oil yield and quality in biomass pyrolysis processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.