Abstract

A natural Maghnia clay was pillared by Al 13 and impregnated by 3–10 wt.% Me (Me = Rh, Ni, Pd, Ce) to be used as catalysts in the reforming of methane with carbon dioxide to synthesis gas. The structural and textural properties of materials calcined at 450 °C were determined by several techniques (XRD, FT-IR, 27Al magic angle spinning (MAS) NMR, X-ray photoelectron spectroscopy (XPS), BET, thermogravimetric analysis (TGA)–DSC, H 2-temperature programmed reduction (TPR) and NH 3-TPR). Although impurities are present in the Al-pillared layered clay (PILC) support, most properties are close to those of pure Al-pillared Na-montmorillonite. Impregnation and calcination leads to the plugging of most micropores by clusters or microparticles of oxides. The NMR resonances of Al VI and Al IV specie are not modified after impregnation, and Al VI/Al IV ratio only varies on loading when compared to Al-PILC. Catalytic experiments show that the most active catalyst is 3% Rh/Al-PILC on which 88 mol.% of methane is converted at 650 °C with a minimum amount of carbon deposit. The conversions decrease along the 3% Rh ≈ 10% Ni > 3% Pd > 3% Ni > 3% Ce series. The H 2/CO ratio amounts to 1.1 with Rh and to 0.85 with Pd which are metallic at the temperature of reaction, but it has a lower value with Ni and Ce due to the RWGS reaction known to proceed in the presence of oxides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.