Abstract

Abstract - Aspergillus aculeatus tannase was immobilized on several carriers by entrapment and covalent binding with cross-linking. Tannase immobilized on gelatin with cross-linking agent showed the highest activity and immobilization yield. The optimum pH of the immobilized enzyme was shifted to a more acidic range compared with the free enzyme (from pH 5.5 to pH 5.0). The optimum temperature of the reaction was determined to be 50°C for the free enzyme and 60°C for the immobilized form. The thermal stability, as well as stability over a wide range of pH, was significantly improved by the immobilization process. The calculated K m of the immobilized tannase (11.8 mg ml -1 ) is higher than that of the free tannase (6.5 mg ml -1 ), while V max of the immobilized enzyme (0.32 U (µg protein) -1 ) is lower than that of the free tannase ( 2.7 U (µg protein) -1 ). The immobilized enzyme was able to retain 84 % of the initial catalytic activity after 5.0 cycles. Keywords : Tannase; Enzyme immobilization; SSF, Green tea (

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.