Abstract

Pt-nanoparticles supported on halloysite-nanotubes (HNTs) were selectively deposited onto the inner (Pt(IN)/HNT) or outer (Pt(OUT)/HNT) surface of the support to evaluate their operational stability on the cleaner and efficient hydrogenation of nitro compounds to produce their corresponding anilines. The formation of Pt0-aggregates on the inner or outer surfaces was observed, with mean particles sizes of 2.4–2.9 nm. The catalysts were evaluated using ethanol as solvent and nitrobenzene as a model substrate at a temperature of 298 K, under 1 bar of H2 pressure. The Pt(IN)/HNT catalyst showed better catalytic performance than Pt(OUT)/HNT, which was mainly attributed to the confinement effect of the Pt-nanoparticles inside the HNTs. However, the operational stability showed that Pt(OUT)/HNT retained its catalytic performance after 15 cycles, while the Pt(IN)/HNT catalyst suffered deactivation after the 5th cycle. The best catalytic system showed a moderate-to-high efficiency in the efficient hydrogenation of 7 nitro compounds used to produce their corresponding anilines, which are important pharmaceutical building blocks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.