Abstract
δ-Valerolactone (DVL) is a five-carbon (C5) cyclic ester that can undergo ring-opening polymerization to yield high-performance, biocompatible polyesters. But current market prices of C5 chemicals like DVL are very high due to poor availability of C5 feedstock in petroleum. Herein, we demonstrate a novel route to DVL synthesis via dehydrogenation of biomass-derived 2-hydroxytetrahydropyran (HTHP) over Cu/SiO2 without the use of toxic reagents. Since HTHP exists in thermal equilibrium with 3,4-dihydropyran (DHP) via dehydration, and with 2,2’-oxybis(tetrahydropyran) and 5-(tetrahydropyran-2-yloxy)pentanal via acetalization, we have also determined the thermochemistry (ΔHrxn and ΔGrxn) of each competing reaction using density functional theory (DFT) calculations at the M06–2X/cc-pVTZ level. Lastly, by developing a kinetic model of all 8 reactions involved, we have achieved 84 % selectivity to DVL at 150°C in a packed bed reactor for over 72 hours of time on stream.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.