Abstract
The catalytic performance of Zr-abtc and MIP-200 metal-organic frameworks consisting of 8-connected Zr6 clusters and tetratopic linkers was investigated in H2 O2 -based selective oxidations and compared with that of 12-coordinated UiO-66 and UiO-67. Zr-abtc demonstrated advantages in both substrate conversion and product selectivity for epoxidation of electron-deficient C=C bonds in α,β-unsaturated ketones. The significant predominance of 1,2-epoxide in carvone epoxidation, coupled with high sulfone selectivity in thioether oxidation, points to a nucleophilic oxidation mechanism over Zr-abtc. The superior catalytic performance in the epoxidation of unsaturated ketones correlates with a larger amount of weak basic sites in Zr-abtc. Electrophilic activation of H2 O2 can also be realized, as evidenced by the high activity of Zr-abtc in epoxidation of the electron-rich C=C bond in caryophyllene. XRD and FTIR studies confirmed the retention of the Zr-abtc structure after the catalysis. The low activity of MIP-200 in H2 O2 -based oxidations is most likely related to its specific hydrophilicity, which disfavors adsorption of organic substrates and H2 O2 .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.