Abstract

The development of efficient and stable catalysts is of great importance for the elimination of volatile organic pollutants (VOCs). In this work, AuPdx nanoparticles (NPs) were loaded on TiO2 through the electrostatic adsorption approach to generate the yAuPdx/TiO2 (i.e., 0.35AuPd0.46/TiO2, 0.34AuPd2.09/TiO2, and 0.37AuPd2.72/TiO2; x and y are Pd/Au molar ratio and AuPdx loading, respectively; x = 0.46–2.72; and y = 0.34–0.37 wt%) catalysts, and their catalytic activities for the oxidation of ethyl acetate were determined. The results showed that the 0.37AuPd2.72/TiO2 sample exhibited the best activity (T50% = 217 °C and T90% = 239 °C at SV = 40,000 mL/(g h), Ea = 37 kJ/mol, specific reaction rate at 220 °C = 113.8 µmol/(gPd s), and turnover frequency (TOFNoble metal) at 220 °C = 109.7 × 10−3 s−1). The high catalytic performance of the 0.37AuPd2.72/TiO2 sample was attributed to the good dispersion of AuPd2.72 NPs, the strong redox ability, the large ethyl acetate adsorption capacity, and the strong interaction between AuPdx and TiO2. Acetaldehyde, ethanol, and acetic acid are the main intermediates in the oxidation of ethyl acetate, and the loading of AuPdx NPs effectively reduces the formation of the toxic by-product acetaldehyde. The oxidation of ethyl acetate over the 0.34AuPd2.09/TiO2 sample might occur via the pathway of ethyl acetate → ethanol → acetic acid → acetate → CO2 and H2O. We believe that the obtained results may provide a useful idea for the design of bimetallic catalysts under industrial conditions and for understanding the VOCs oxidation mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.