Abstract
The present paper represents the promising ways to improve catalytic performance by introducing zirconium phosphate (ZP) on Ru/Co/SiO2 catalysts and the related kinetic models using the optimized Fischer–Tropsch synthesis (FTS) catalyst. A lot of works has been reported using cobalt-based catalyst for FTS reaction, and many authors have continuously tried to find out highly efficient FTS catalyst by modifying support as well as by introducing promoters. Silica is one of the excellent candidates as catalytic supports, and the present works intensively represents how to modify SiO2 support for a high catalytic performance by using ZP species. The effect of ZP-modification of SiO2 support with respect to cobalt aggregation and catalytic deactivation was mainly investigated for FTS reaction. The surface modification at P/(Zr + P) molar ratio between 0.029 and 0.134, enhanced the spatial confinement effect of cobalt clusters, and resulted in high catalytic stability with the help of well-dispersed ZP particle formation. The enhanced catalytic performance, in terms of CO conversion, C5+ selectivity and catalytic stability, is mainly attributed to the suppressed aggregation, a homogeneous distribution of cobalt clusters with a proper size and a low mobility of cobalt clusters at an optimum molar ratio of P/(Zr + P) because of the formation of thermally stable ZP particles. The kinetic parameters and rate equations on the optimized catalyst are also derived in terms of CO conversion and product distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.