Abstract

Atmospheric ozone has long been a threat to human health, however, rational design of high-performance O3-decomposition catalysts remains challenging. Herein, we demonstrate the great potential of a series of isomorphous bimetallic MOFs denoted as PCN-250(Fe2M) (M = Co2+, Ni2+, Mn2+) in catalytic O3 decomposition. Particularly, PCN-250(Fe2Co) showed 100% O3 removal efficiency for a continuous air flow containing 1 ppm O3 over a wide humidity range (0 ‒ 80% RH) at room temperature. Mechanism studies suggested that the high catalytic performance originated from the introduction of open Co(II) sites as well as its porous structure. Additionally, at low pressures around 10 Pa, PCN-250(Fe2Co) exhibited high adsorption capacities (89 ‒ 241 mg g−1) for most VOCs, which are not only a class of hazardous air pollutants but also the precursor of O3. This work opens up a new avenue to develop advanced air purification materials for O3 and VOCs removal in one.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.