Abstract

Fe3O4 was supported on mesoporous Al2O3 or SiO2 (50 wt.%) using an incipient wetness impregnation method, and Fe3O4/Al2O3 exhibited higher catalytic efficiency for the degradation of 2,4-dichlorophenoxyacetic acid and para-chlorobenzoic acid aqueous solution with ozone. The effect and morphology of supported Fe3O4 on catalytic ozonation performance were investigated based on the characterization results of X-ray diffraction, X-ray photoelectron spectroscopy, BET analysis and Fourier transform infrared spectroscopy. The results indicated that the physical and chemical properties of the catalyst supports especially their Lewis acid sites had a significant influence on the catalytic activity. In comparison with SiO2, more Lewis acid sites existed on the surface of Al2O3, resulting in higher catalytic ozonation activity. During the reaction process, no significant Fe ions release was observed. Moreover, Fe3O4/Al2O3 exhibited stable structure and activity after successive cyclic experiments. The results indicated that the catalyst is a promising ozonation catalyst with magnetic separation in drinking water treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call