Abstract

Herein, an alumina-based bimetallic catalyst (Cu1Mn7@γ-Al2O3) was synthesized for bisphenol A (BPA) degradation in the catalytic ozonation process. The catalytic ozonation system could degrade 93.9% of BPA within 30 min under the conditions of pH = 7.0, 10 mg L−1 O3 concentration, and 24 g L−1 catalyst dosage compared to ozone alone (21.0%). The enhanced BPA degradation efficiency was attributed to the abundant catalytic sites and synergistic effects of Cu and Mn. The results revealed that the synergistic interaction between Cu and Mn effectively accelerated the electron transfer process on the catalyst surface, thus promoting the generation of reactive oxygen species (ROS). Further studies indicated that the BPA degradation in Cu1Mn7@γ-Al2O3/O3 system predominantly followed the ·OH and O2·- oxidation pathway. Based on the density functional theory (DFT) calculations and intermediates detected by LC-MS analysis, two pathways for BPA degradation in the Cu1Mn7@γ-Al2O3/O3 system were proposed. The toxicity estimation illustrated that the toxicity of BPA and its byproducts was effectively reduced in the Cu1Mn7@γ-Al2O3/O3 system. This work provides a new protocol for O3 activation and pollutant elimination through a novel bimetallic catalyst during water purification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.