Abstract

The nitrogen oxidation reaction (NOR) to form nitric acid by applying natural air and H2O under ambient conditions is a sustainable approach to achieving efficient and selective N2 fixation for industrial applications. In this study, four kinds of Co3O4 catalysts with a controllable microstructure were prepared to catalyze the direct NOR of N2 in the air. At the same time, the reaction mechanism of the conversion of N2 to nitric acid under catalytic ozonation was explored through experimental research and density functional theory (DFT) calculation. The results showed that the prepared porous nanosheets self-assembled into microflower-structured samples. The HCOF showed extraordinary catalytic performance for direct NOR to produce a high concentration of nitric acid. The maximum rate of nitric acid formation could be as high as 6.67 mmol/(h·gcat), which was higher than those of most reported photocatalytic or electrocatalytic N2 fixation processes for direct NOR to produce NO3-. Furthermore, the 15N isotopic-labeling experiment confirmed that the produced NO3- originated from N2 in the air by the direct NOR process. In the direct NOR mechanism, inert N2 molecules were captured at the Co3+ active sites by the acceptance-donation electron conduction mode, and the oxygen vacancies boosted the chemical adsorption of N2 molecules and greatly reduced the activation energy barrier of N2 molecules. The active free radicals •OH and •O2- generated by the decomposition of O3 molecules oxidized N2 to the intermediate *NO, which was the rate-determining step, and it was then absorbed by water to form nitric acid. The air catalytic ozonation method in this study was proposed as a facile pathway for efficient nitrogen fixation. This research provides a new method for environmental protection and efficient production of nitric acid at distributed sources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call