Abstract

Oxo-bridged diiron(III) complexes [Fe2O(L1)2(H2O)2](ClO4)4 (1) and [Fe2O(L2)2(H2O)2](ClO4)4 (2), where L1 and L2 are tetradentate N-donor N,N′-bis(2-pyridylmethyl)-1,2-cyclohexanediamine and N,N′-bis(2-pyridylmethyl)ethane-1,2-diamine respectively, have been isolated as synthetic models of non-heme iron oxygenases and characterized by physicochemical and spectroscopic methods. Both the complexes have been studied as catalysts for the oxyfunctionalization of saturated hydrocarbons using green hydrogen peroxide (H2O2) as oxidant under mild conditions. The selectivity (A/K) and regioselectivity (3°/2°) in oxidative C–H functionalization of alkanes suggests the involvement of metal-based intermediate in the oxygenation reaction. The catalytic efficiency is found to be strongly dependent on the presence of acetic acid. Remarkable increase in conversion and selectivity favoring the formation of alcohols in the oxidation of cyclohexane and cyclooctane and exclusive hydroxylation of adamantane with drastic enhancement of regioselectivity has been achieved by the addition of acetic acid in the presence of H2O2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call