Abstract
Chemoselectively oxidizing Cα -OH to C=O has been considered as a key step for the oxidative depolymerization of lignin. In this work, we design and prepare a series of composites of RuCo alloy nanoparticles and reduced graphene oxide (RuCo/rGO) with different Ru to Co ratios and explore their catalytic activities in the oxidation of veratryl alcohol derivatives, which usually serve as the model compounds for studying lignin oxidation. It is illustrated that the Ru to Co ratio determines the morphology and average size of the RuCo alloy nanoparticles on rGO, and the overall catalytic activities of the composites. The RuCo alloy nanoparticles on rGO with Ru to Co ratios of 1 : 0 to 1.2 : 1 show a unique flower-shaped morphology that increases the exposure of the active sites and thus promotes their contact with the substrates. The RuCo/rGO composites exhibit high catalytic activities for the oxidation of Cα -OH to aldehydes at 100 °C for 2 h. Additionally, the Co component affords the RuCo/rGO composites with magnetic properties that make the separation and recovery of the catalyst simple. Given the high catalytic performances and easy recovery, the RuCo/rGO composites would be potentially useful for the depolymerization of lignin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.