Abstract

Mn/MCM-41 and imp-Mn/MCM-41 catalysts were prepared in this study through metal heteroatom substitution and impregnation methods, respectively, and their catalytic oxidation performance of toluene under non-thermal plasma (NTP) in a dielectric barrier discharge reactor was studied. The stability of the catalyst and the parameters of catalytic oxidation conditions (initial concentration of toluene, O2 ratio, and relative humidity of carrier gas) were optimized. Characterization proved that the impregnation method resulted in the existence of manganese in the form of oxides (MnO2, Mn2O3) outside the pores of MCM-41. Meanwhile, the metal heteroatom substitution method implanted manganese into the mesoporous structure and replaced part of it with Si-O-Mn. NTP catalytic oxidation of toluene, ozone emission, and GC–MS by-product analysis confirmed that 60Mn/MCM-41 catalyst has high catalytic activity. Moreover, the catalyst affected the production of by-products. The stability test revealed that the 60Mn/MCM-41 catalyst still respectively reached 84.6% and 61% in the conversion of toluene and the selectivity of CO2 under the SED of 558 J/L after 40 h discharge reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.