Abstract

Manganese–cobalt–cerium oxide (Mn–Co–Ce–Ox) catalysts were synthesized by the co-precipitation method and tested for activity in low-temperature catalytic oxidation of NO in the presence of excess O2. With the best Mn–Co–Ce mixed-oxide catalyst, approximately 80 % NO conversion was achieved at 150 °C and a space velocity of 35,000 h−1. The effect of reaction conditions (reaction temperature, volume fractions of NO and O2, gas hourly space velocity (GHSV), and catalyst stability) was investigated. The optimum reaction temperature was 150 °C. Increasing the O2 content above 3 % results in almost no improvement of NO oxidation. This catalyst enables highly effective removal of NO within a wide range of GHSV. Furthermore, the stability of the Me–Co–Ce–Ox catalyst was excellent; no noticeable decrease of NO conversion was observed in 40 h.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.