Abstract

There is an urgent need to develop novel and high-performance catalysts for chlorinated volatile organic compound oxidation as a co-benefit of NOx. In this work, HSiW/CeO2 was used for chlorobenzene (CB) oxidation as a co-benefit of NOx reduction and the inhibition mechanism of NH3 was explored. CB oxidation over HSiW/CeO2 primarily followed the Mars-van-Krevelen mechanism and the Eley-Rideal mechanism, and the CB oxidation rate was influenced by the concentrations of surface adsorbed CB, Ce4+ ions, lattice oxygen species, gaseous CB, and surface adsorbed oxygen species. NH3 not only strongly inhibited CB adsorption onto HSiW/CeO2, but also noticeably decreased the amount of lattice oxygen species; hence, NH3 had a detrimental effect on the Mars-van-Krevelen mechanism. Meanwhile, NH3 caused a decrease in the amount of oxygen species adsorbed on HSiW/CeO2, which hindered the Eley-Rideal mechanism of CB oxidation. Hence, NH3 significantly hindered CB oxidation over HSiW/CeO2. This suggests that the removal of NOx and CB over this catalyst operated more like a two-stage process rather than a synergistic one. Therefore, to achieve simultaneous NOx and CB removal, it would be more meaningful to focus on improving the performances of HSiW/CeO2 for NOx reduction and CB oxidation separately.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.