Abstract

The production of 2,5-furandicarboxylic acid (FDCA) through green reaction routes is of crucial scientific value for the production of sustainable polymers. This study explores the active centers in cobalt-nitrogen-doped carbon (Co-N/C) for FDCA production. It was established that Co-Nx synergistically along with the nitrogen-doped carbon acted as centers for 5-hydroxymethylfurfural (HMF) oxidation. This study demonstrates a sustainable method for FDCA production from HMF without using precious metals, organic solvents, and harsh basic environments. Co-N/C catalyst displayed a high FDCA yield of ∼90% in an aqueous medium under mildly basic conditions in 34 h with 100% HMF conversion. An innovative strategy of stepwise base addition has been proposed to effectively accelerate the generation reaction of FDCA. The detrimental effects of high heating rate and calcination temperature on the active centers were also thoroughly investigated. Through DFT simulations it was established that Co-Nx aided in the activation of oxygen for HMF oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.