Abstract

Volatile organic compounds (VOCs) are responsible for environmental problems and may affect human health. Several treatment technologies minimize VOCs emissions; among those, catalytic oxidation appears as a promising alternative. In this study, a pilot-scale catalytic reactor was developed and the influence of process parameters on toluene degradation were investigated. Inlet gases were heated by electrical resistances and the catalyst employed was a honeycomb shape commercial automotive catalyst (Umicore, model AFT). Toluene degradation higher than 99% was achieved for several conditions and temperature showed to be the most important process variable for it. For all concentrations, it was observed that when increasing temperature led to a decrease on the space time. At 800 ppmv, varying from 543 K to 633 K, the space time decreased from 0.121 s to 0.08 s, respectively. At 1600 ppmv for the same temperature range, space time was reduced from 0.098 s to 0.040 s, respectively. At 2400 ppmv, varying from 543 K to 633 K, space time decreased from 0.081 s to 0.048 s. The catalytic reactor developed proved to be efficient for VOCs treatment, showing a high potential of application at industrial emission sources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.