Abstract

Titanium dioxide (TiO2) and Mn-doped TiO2 (Mn(x)-TiO2) were synthesized in a sol-gel method and characterized by BET surface area analysis, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Gasphase elemental mercury (Hg0) oxidation and capture by the Mn-doped TiO2 catalyst was studied in the simulated flue gas in a fixed-bed reactor. The investigation of the influence of Mn loading, flue gas components (SO2, NO, O2, and H2O) showed that the Hg0 capture capability of Mn(x)-TiO2 was much higher than that of pure TiO2. The addition of Mn inhibits the grain growth of TiO2 and improves the porous structure parameters of Mn(x)-TiO2. Excellent Hg0 oxidation performance was observed with the catalyst with 10% of Mn loading ratio and 97% of Hg0 oxidation was achieved under the test condition (120 °C, N2/6%O2). The presence of O2 and NO had positive effect on the Hg0 removal efficiency, while mercury capture capacity was reduced in the presence of SO2 and H2O. XPS spectra results reveal that the mercury is mainly present in its oxidized form (HgO) in the spent catalyst and Mn4+ doped on the surface of TiO2 is partially converted into Mn3+ which indicates Mn and the lattice oxygen are involved in Hg0 oxidation reactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call